
Cyberinfrastructure Shell
Core Specification 1.0

March 2008

Copyright c© 2006, 2007, 2008 Indiana University

Licensed under the Apache License, Version 2.0 (the “License”); you may
not use this file except in compliance with the License. You may obtain a
copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing
permissions and limitations under the License.

Contents

1 Introduction 3
1.1 Acknowledgements . 3
1.2 CIShell Platform Overview . 3
1.3 Reader Level . 3
1.4 Conventions and Terms . 4
1.5 Version Information . 4

2 Framework API 5
2.1 Introduction . 5

2.1.1 Entities . 5
2.1.2 Operations . 6

2.2 OSGi Dependencies . 6
2.3 Algorithm Specification . 7

2.3.1 Introduction . 7
2.3.2 Optional Interfaces . 8
2.3.3 Service Metadata . 8
2.3.4 Algorithm Types . 12

2.4 Data Specification . 16
2.4.1 Introduction . 16
2.4.2 Data Format Specification . 16

2.5 User Interface Specification . 17
2.5.1 Introduction . 17
2.5.2 MetaTypeProvider Extensions . 17
2.5.3 Publishing MetaTypeProviders . 18

2.6 User Adjustable Preferences Specification . 18
2.6.1 Introduction . 18
2.6.2 Publishing User Adjustable Preferences . 18

2.7 org.cishell.framework . 19
2.8 org.cishell.framework.algorithm . 21
2.9 org.cishell.framework.data . 30
2.10 org.cishell.framework.userprefs . 33

3 Data Conversion Service Specification 35
3.1 Introduction . 35

3.1.1 Entities . 35
3.2 Data Conversion Service . 35
3.3 org.cishell.service.conversion . 36

1

4 GUI Builder Service Specification 40
4.1 Introduction . 40

4.1.1 Entities . 40
4.2 org.cishell.service.guibuilder . 41

5 Log Service Specification 46
5.1 Introduction . 46

6 Preferences Service Specification 47
6.1 Introduction . 47

7 Data Manager Application Service Specification 48
7.1 Introduction . 48

7.1.1 Entities . 48
7.2 org.cishell.app.service.datamanager . 48

8 Scheduler Application Service Specification 53
8.1 Introduction . 53

8.1.1 Entities . 53
8.2 org.cishell.app.service.scheduler . 53

A Apache 2.0 License 60

2

Chapter 1

Introduction

The Cyberinfrastructure Shell (CIShell) is an open source, community-driven platform for the
integration and utilization of datasets, algorithms, tools, and computing resources. It is built
specifically to enable (1) algorithm developers to write and disseminate their algorithms in their
favorite programming language while retaining their intellectual rights after distribution; (2) data
holders to easily disseminate their data for use by others; (3) application developers to design
applications from custom sets of algorithms and datasets that interoperate seamlessly; and
ultimately (4) end-users to use datasets and algorithms effectively.

1.1 Acknowledgements

The Cyberinfrastructure Shell was designed and developed at the Cyberinfrastructure for Network
Science Center (CNSC) at Indiana University in Bloomington, Indiana. The specification and
API was designed and authored by Bruce W. Herr II, but received input from all members of the
CIShell team. Important contributors from the CIShell team include Katy Börner (director of
CNSC), Weixia Huang, Russell Duhon, Micah Linnemeier, and Timothy Kelley. Much of the
design of CIShell draws on previous work by Shashikant Penumarthy, Bruce W. Herr II, and Katy
Börner on the Information Visualization Cyberinfrastructure (IVC). Thanks go out to all those
who have used or contributed to IVC, CIShell, and the Network Workbench (the first project to
use CIShell). Development of the Cyberinfrastructure Shell was funded by two grants from the
National Science Foundation, NSF IIS-0238261 and NSF IIS-0513650.

1.2 CIShell Platform Overview

The CIShell Platform consists of Java interface definitions for algorithms, data, services for
algorithm developers, and services for application developers. Much of the platform uses
metadata and is fully defined.
This specification and associated Java API are released under the Apache 2.0 License.

1.3 Reader Level

This specification is written for the following audiences:

• Java algorithm developers

3

• Non-Java algorithm developers

• Framework and system service developers (system developers)

• Application developers building on CIShell

The CIShell Specification assumes that the reader has at least one year of practical experience in
writing Java programs. CIShell is built to run on the OSGi Service Platform Release 41 and thus
a working knowledge of OSGi is expected. OSGi (and thus CIShell) is highly dynamic and must
be taken into consideration when developing anything on CIShell.
Non-Java algorithm developers may not need to know any Java and should be mainly concerned
with the metadata definitions for algorithms and data. They may also need to be aware of OSGi
and the other services CIShell provides, but more than likely will not directly interact with them.

1.4 Conventions and Terms

In this specification, algorithms are referred to in three different contexts. An abstract algorithm
is the pure idea of the algorithm with no actual source code. It is a series of steps sometimes put
into pseudo-code and often published in academic journals. An Algorithm with a capital A refers
to the Java class called Algorithm. And finally, an algorithm with a lowercase A refers to the
bundle of code and metadata that encompasses an algorithm written to work with the CIShell
Platform. This includes the implementation of AlgorithmFactory and Algorithm, and the
metadata, files, and other code that go into an OSGi bundle.
All other conventions and terms are exactly the same as from OSGi’s Core Specification, section
1.4.

1.5 Version Information

This is the first release of the CIShell Platform Specification. All packages are at 1.0 for this
release. Subsequent releases may increase the version number of specific packages if changes have
been made.

Item Package Version
Framework Specification org.cishell.framework Version 1.0
Algorithm Specification org.cishell.framework.algorithm Version 1.0
Data Specification org.cishell.framework.data Version 1.0
User Adjustable Preferences Specification org.cishell.framework.userprefs Version 1.0
Data Conversion Service Specification org.cishell.service.conversion Version 1.0
GUI Builder Service Specification org.cishell.service.guibuilder Version 1.0
Data Manager Application Service Specification org.cishell.app.datamanager Version 1.0
Scheduler Application Service Specification org.cishell.app.scheduler Version 1.0

Table 1.1: Packages and Versions

1http://www.osgi.org/Release4/Download

4

Chapter 2

Framework API

Version 1.0

2.1 Introduction

The org.cishell.framework package and subpackages define the core of CIShell. The key
components being algorithms, data, and CIShell service access.

2.1.1 Entities

• AlgorithmFactory - The service interface for algorithms. A factory class which creates an
Algorithm for execution from input data.

• Algorithm - The interface for the code execution part of the algorithm.

• AlgorithmProperty - The interface which provides string constants for an algorithm’s service
metadata.

• ParameterMutator - The interface an AlgorithmFactory extends to provide the ability to
add, remove, or modify its input parameters specification (see section 2.5) before being
transformed into a form for user input.

• DataValidator - The interface an AlgorithmFactory extends to provide additional data
validation in addition to the data format validation that an application should provide
ahead of time.

• ProgressTrackable - The interface an Algorithm extends to allow for more detailed
monitoring and control of an Algorithm’s progress while executing.

• ProgressMonitor - The interface for a class to be passed in to a ProgressTrackable
Algorithm so that the Algorithm can be controlled and provide information on its progress
while executing.

• Data - The interface used to pass data (other than input parameters) and its metadata
between algorithms.

• BasicData - A simple implementation of the Data interface.

• DataProperty - The interface which provides string constants for Data metadata.

5

• CIShellContext - The interface for a class to be passed in to an AlgorithmFactory for use
in gaining access to standard CIShell services.

• LocalCIShellContext - A simple implementation of the CIShellContext interface which
pulls CIShell services from the OSGi service registry.

<<interface>>

AlgorithmFactory
<<interface>>

Algorithm
Creates n1

<<interface>>

AlgorithmProperty

<<interface>>

DataValidator <<interface>>

ProgressTrackable

<<interface>>

ProgressMonitor

<<interface>>

Data
<<class>>

BasicData

 Optional
 Optional

Service Constants

Communications

1

1

<<interface>>

CIShellContext

<<class>>

LocalCIShellContext

<<interface>>

DataProperty

Data Constants

Given

n

1

Given

0..n

1

<<interface>>

ParameterMutator

 Optional

<<interface>>

LogService

<<interface>>

PreferencesService

<<interface>>

DataConversionService

<<interface>>

GUIBuilderService
Provides Access

1

n

1

1

1

Figure 2.1: org.cishell.framework Class Diagram

2.1.2 Operations

The algorithm developer should implement algorithms as described in this specification. The
system developer will provide the services required by CIShell in OSGi’s service registry.
Application developers will provide everything else, orchestrating the passing of information
between algorithms.

2.2 OSGi Dependencies

CIShell is built to be run in a fully compliant OSGi Service Platform R4 implementation. In
addition to the base OSGi implementation, several optional OSGi services are required to be
available in a fully compliant CIShell implementation. Each additional required service is
described in the OSGi Service Platform Service Compendium R41.

Required Services

Metatype Service is described in OSGi section 105 “Metatype Service Specification.” This
service is used by CIShell to find MetaTypeProviders for user interface specification,
user-adjustable preferences, and input parameters. It also provides an XML format for
automatically generating MetaTypeProviders which the MetaTypeService harvests for use.

Log Service is described in OSGi section 101 “Log Service Specification.” This service is used
as a universal logging system for algorithms and services. See chapter 5 for more details.

1http://www.osgi.org/Release4/Download

6

Preferences Service is described in OSGi section 106 “Preferences Service Specification.” This
service is used as a universal preference storage system for algorithms and services. See
chapter 6 for more details.

Configuration Admin Service is described in OSGi section 104 “Configuration Admin Service
Specification.” This service is used as a manager/provider of configuration information for
bundles and services. It is useful for meeting the User Adjustable Preferences (section 2.6)
requirements.

Recommended Services

Declarative Services is described in OSGi section 112 “Declarative Services Specification.”
This service can be used by CIShell algorithms to simplify algorithm service registration
and for finding necessary auxilary services.

2.3 Algorithm Specification

Version 1.0

2.3.1 Introduction

The CIShell Platform has been specifically designed around the idea of the algorithm. It is the
central and most important concept. Algorithms are fully defined and self-contained bits of
execution. They can do many things from data conversion, data analysis, and can even spawn
whole external programs if needed. Algorithms are well defined black boxes in that their input
and output is specified in each algorithm’s service metadata and associated MetaTypeProvider.
Other than that, CIShell makes no attempt to understand the algorithm.

Essentials

• Application Independence - Algorithms must be usable in a wide variety of contexts and
should not be tied to any one CIShell environment or front end where possible.

• User Interface Independence - Algorithms should not have to tie themselves to a single UI
where possible.

• Black Box Algorithms - Algorithms are black boxes whose possible interactions are
described in metadata.

• Delayed Execution - There may be a large delay between an algorithm getting parameters
for execution and its actual execution.

• Remote Execution - Algorithm interfaces should be designed to facilitate remote execution
of algorithms where possible.

Operations

To be recognized by CIShell, an AlgorithmFactory must be registered with OSGi’s service
registry. The service registry requires three things when registering: an interface
(AlgorithmFactory), an implementation, and a Dictionary of metadata. The algorithm

7

developer provides the implementation and metadata. The metadata helps to differentiate and
define the algorithm for search and discovery, see section 2.3.3.
An algorithm defines its inputs in two ways. First, the input data is defined in the algorithm’s
service metadata. Second, the acceptable user-entered input parameters are defined in a
MetaTypeProvider and published to the MetaTypeService.
Figure 2.2 shows the typical flow of information into and out of an algorithm. First the input
parameter specification is pulled from the MetaTypeService. If parameters are needed, then a UI
is created and user inputs are entered. To create an Algorithm, the AlgorithmFactory is passed
the user-entered parameters, zero or more pieces of data, and a CIShellContext. The Algorithm
is then executed and produces zero or more pieces of data.

<<interface>>

Algor i thmFactory
<<interface>>

Algor i thm
creates 11

<<interface>>

D a t a

<<interface>>

CIShel lContext
1

1given0..n 1

<<interface>>

Dict ionary
1

1
<<interface>>

D a t a
creates 0..n1

<<interface>>

MetaTypeServ ice
<<interface>>

MetaTypeProvider
provides 11

Get User Input

creates

Figure 2.2: Algorithm Execution Workflow

2.3.2 Optional Interfaces

Algorithm developers may augment algorithms with additional interfaces to enhance parts of the
execution workflow. See each interface’s API documentation for more details.

ParameterMutator An AlgorithmFactory can implement the ParameterMutator interface to
add, remove, or modify an algorithm’s input parameters between the time when its
MetaTypeProvider is pulled from the MetaTypeService and when the corresponding UI is
shown to the user. This is typically done to customize the input parameters based on the
data to be given to the algorithm. See section 2.5 for information on constructing and
publishing MetaTypeProviders.

DataValidator An AlgorithmFactory can implement the DataValidator interface to validate
the data beyond the data format validation that an application should provide ahead of
time.

ProgressTrackable An Algorithm can implement ProgressTrackable to allow for more
detailed monitoring and control of an Algorithm’s progress while executing.

2.3.3 Service Metadata

When an algorithm is registered with OSGi’s service registry, a Dictionary of metadata is
provided. Since the algorithm itself is a black box, the metadata is used to provide information
about the algorithm. Information such as the format of each Data item to be input and output is
provided. In addition to the mechanics of the algorithms, data such as the authors, label, urls,

8

citation references, and description are provided. This metadata can be searched by anyone to
find relevant algorithms using OSGi’s service registry.
Each standard metadata element required by the CIShell specification is defined below and in the
interface AlgorithmProperty. It defines each key string and the valid value strings to set in the
metadata Dictionary when registering an algorithm as a service.

service.pid

A string that uniquely identifies the algorithm. The service.pid should not change between
sessions and only one algorithm with a given service.pid should be available in the service registry
at any given time. It is recommended to use the Java naming scheme including path for this
purpose, i.e., “org.cishell.my.algorithm.MyAlgorithm”. This metadata element is defined as part
of the OSGi Service Platform Core Specification, section 6.1.12.

Example 1: service.pid = org.my.algorithm.MyAlgorithm

parameters pid

When this key is not set, an algorithm’s user-entered input parameters are assumed to be
registered in the MetaTypeService with a persistent id equal to the algorithm service’s
“service.pid”. An algorithm can override this by setting this key to their custom persistent id.
See section 2.5 for information on creating and publishing input parameters.

Example 1: parameters pid = org.my.custom.pid.that.i.want.to.use

in data

Specifies the formats and number of Data inputs the algorithm accepts. The string is a comma
separated list of data formats as defined in section 2.4. If no Data inputs are necessary then the
string “null” or not specifying the in data attribute at all is valid. If any data is optional, prefix
the associated format with a “?”. When the AlgorithmFactory.createAlgorithm method is
called with a Data array, an optional Data element will be null if it is not provided.
By using the “+”, “*”, or “?” prefixes, ambiguities could arise from specifying multiple input
formats that could easily fit into two or more of the formats. An algorithm developer should take
care when reading in Data arrays from possibly ambiguous in data strings.

Example 1: in data = null
Example 2: in data = java.lang.String
Example 3: in data = java.lang.String, file:text/plain, file:text/xml
Example 4: in data = file-ext:xml
Example 5: in data = +file:text/plain, *file:text/xml, ?java.lang.String
Example 6: in data = ?my.package.SpecialClass

out data

Specifies the formats and number of Data inputs the algorithm produces when successfully
executed. The string is a comma separated list of data formats as defined in section 2.4. If no
Data is output then the string “null” or not specifying the out data attribute at all is valid. If any
data is optional, prefix the associated format with a “?”. When producing the Data array, an
optional Data element must be null if it is not produced.

9

Example 1: out data = null
Example 2: out data = java.lang.String
Example 3: out data = java.lang.String, file:text/plain, file:text/xml
Example 4: out data = file-ext:csv
Example 5: out data = +file:text/plain, *file:text/xml, ?java.lang.String
Example 6: out data = ?my.package.SpecialClass

parentage

If this metadata element is used, it defines how the output Data produced by the algorithm
should be arranged. Data items can be given a parent as part of their metadata (which usually
means the Data was derived from the referenced Data). If parentage is set to “default” then each
of the algorithm’s output Data items will have their parent Data item set as the first input Data
item (if applicable) by the CIShell-conforming application. If parentage is set to something else or
is not set at all, then it is up to the algorithm to set up these relationships.

Example 1: parentage = default

type

Specifies the type of the algorithm. If no type is set, then it is assumed to be of “Standard
Algorithm” type. Which metadata keys to use and their exact meaning varies depending on the
type of algorithm. The different algorithm types and their constraints are defined in section 2.3.4.

Example 1: type = converter
Example 2: type = validator
Example 3: type = dataset

remotable

Specifies if the algorithm can be run remotely. An algorithm can be run remotely if it only uses
the services provided by the CIShellContext and does not create its own
non-GUIBuilderService-built GUI. Valid strings are “true” or “false”. If this metadata element
is not set, then it is assumed that it cannot be run remotely.

Example 1: remoteable = true

label

Specifies a human-readable short name for the algorithm. What label is acceptable varies
depending on the type of the algorithm.

Example 1: label = Load. . .

description

Provides more details on the workings of the algorithm. What description is acceptable varies
depending on the type of the algorithm.

Example 1: description = Loads selected data into the data manager.

10

menu path

Specifies where on the menu an algorithm is to be placed if a menu bar is used. Otherwise, it can
act as a primitive hierarchical classification of the algorithm. The string is a “/” separated list
with each element in the list getting more specific. The last element in the list specifies a group
for grouping algorithms in its final menu. Possible groups include: “additions” for default
placement, “start” for being placed at the start of the menu, or “end” for being placed at the end
of the menu.

Example 1: menu path = File/additions

Example 2: menu path = Analysis/Undirected Networks/start

Example 3: menu path = Visualization/Networks/end

conversion

For converter algorithms, this metadata element specifies if any data is lost in the conversion.
Possible values are “lossy” and “lossless”. A description of what type of information is lost should
be given in the “description” metadata field.

Example 1: conversion = lossy

authors

A comma separated list of the authors of the abstract algorithm.

Example 1: authors = Bruce W. Herr II

Example 2: authors = Bruce W. Herr II, Weixia Huang, Katy Borner

implementers

A comma separated list of the developers who implemented the algorithm in code.

Example 1: implementers = Bruce W. Herr II

Example 2: implementers = Bruce W. Herr II, Weixia Huang, Katy Borner

integrators

A comma separated list of the developers who integrated the algorithm code as a compliant
cishell algorithm.

Example 1: integrators = Bruce W. Herr II

Example 2: integrators = Bruce W. Herr II, Weixia Huang, Katy Borner

documentation url

A URL to relevant documentation for the algorithm.

Example 1: documentation url = http://cishell.org/dev/

11

reference

A formal reference to a paper explaining the abstract algorithm.

Example 1: reference = Herr, Bruce W. II, Huang, Weixia, Penumarthy, Shashikant,
Börner, Katy. (2007) Designing Highly Flexible and Usable Cyberinfrastructures
for Convergence. In William S. Bainbridge and Mihail C. Roco (Eds.) Progress
in Convergence - Technologies for Human Wellbeing. Annals of the New York
Academy of Sciences, Boston, MA, volume 1093, pp. 161-179.

reference url

A URL to a paper explaining the abstract algorithm.

Example 1: reference url = http://cishell.org/papers/07-cishell.pdf

written in

A comma separated list of the programming languages used to implement and integrate the
algorithm code.

Example 1: written in = Java

Example 2: written in = Java, C++

2.3.4 Algorithm Types

Introduction

CIShell algorithms are a generic concept which have many uses. In the CIShell Platform, they are
used in 4 contexts: as general data-centric algorithms to be used by an end-user (Standard
Algorithms), as data converters (Converter Algorithms), as data validators (Validator
Algorithms), and as providers of data (Dataset Algorithms). In order to better separate these
uses, a lightweight type system has been introduced. The only way to tell the difference between
them is by the constraints defined for each algorithm type as defined below.

Base Algorithm Constraints

All conformant algorithms regardless of type, must adhere to the following constraints:

Required:

• The algorithm must be a conformant AlgorithmFactory implementation and properly
registered as a service.

• The algorithm’s service metadata must contain a valid “service.pid”.

12

Optional:

• The algorithm’s service metadata should have “remoteable=true” if it meets the
requirements of a remoteable algorithm.

• The algorithm’s service metadata should have a “label” which is a short human-readable
name for the algorithm.

• The algorithm’s service metadata should have a “description” explaining what the
algorithm does in more detail.

• As much of the informational metadata as possible should be provided. This includes
“authors”, “implementors”, “integrators”, “documentation url”, “reference”,
“reference url”, and “written in”.

Standard Algorithms

Standard CIShell algorithms are the algorithms that most end-users will encounter. A standard
algorithm has the following constraints:

Required:

• The algorithm must be a conformant AlgorithmFactory implementation and properly
registered as a service.

• The algorithm’s service metadata must contain a valid “service.pid”.

• The algorithm’s service metadata must have a “label” which is a short human-readable
name for the algorithm. This is typically used to label an algorithm for an end-user to see.

• The algorithm’s service metadata must have a “description” explaining what the algorithm
does in more detail.

• The algorithm’s service metadata must have a “menu path” which is simultaneously a
classification and a location on a GUI’s menubar to place the algorithm in. See section 2.3.3
for how to format a “menu path”.

Optional:

• If additional user-entered input parameters are needed, the algorithm should provide a
MetaTypeProvider published to the MetaTypeService.

• The algorithm’s service metadata should have “remoteable=true” if it meets the
requirements of a remoteable algorithm.

• The algorithm’s service metadata should have “parentage=default” if it wishes to use the
default Data parenting scheme described in section 2.3.3.

• The algorithm’s service metadata does not need to have a “type” set.

• As much of the informational metadata as possible should be provided. This includes
“authors”, “implementors”, “integrators”, “documentation url”, “reference”,
“reference url”, and “written in”.

13

Dataset Algorithms

A dataset algorithm is a custom type of CIShell algorithm for providing pre-generated data for
use in the CIShell Platform. Dataset algorithms act just like standard algorithms and have a
superset of requirements. CIShell Applications may not even treat them any differently than
standard algorithms. A dataset algorithm has the following constraints:

Required:

• The algorithm must be a conformant AlgorithmFactory implementation and properly
registered as a service.

• The algorithm’s service metadata must contain a valid “service.pid”.

• The algorithm’s service metadata must have a “label” which is a short human-readable
name for the dataset being provided. This is typically used to label a dataset for an
end-user to see.

• The algorithm’s service metadata must have a “description” explaining what the dataset is
in more detail.

• The algorithm’s service metadata must have a “menu path” which is simultaneously a
classification and a location on a GUI’s menubar to place the dataset in. Datasets will
typically be in “File/Datasets/additions” See section 2.3.3 for how to format a “menu path”.

• The algorithm’s service metadata must have “type=dataset”.

• The algorithm’s service metadata must have “in data=null” or not defined at all.

• The algorithm’s service metadata must have at least one data item set as its “out data”.

Optional:

• The algorithm’s service metadata should have “remoteable=true” if it meets the
requirements of a remoteable algorithm.

• As much of the informational metadata as possible should be provided. This includes
“authors”, “implementors”, “integrators”, “documentation url”, “reference”, and
“reference url”.

Converter Algorithms

A converter algorithm is a custom type of CIShell algorithm for converting data of one type to
another. Converters are typically leveraged by the DataConversionService and are not used
directly by end-users. A converter algorithm has the following constraints:

Required:

• The algorithm must be a conformant AlgorithmFactory implementation and properly
registered as a service.

14

• The algorithm must take in a single Data item and convert the item, producing a single
Data item. This must be reflected in the algorithm’s service metadata where “in data” and
“out data” have only one data item each.

• The algorithm’s service metadata must contain a valid “service.pid”.

• The algorithm’s service metadata must have “type=converter”.

• The algorithm’s service metadata must have “conversion=lossy” if data is lost during
conversion or “conversion=lossless” if not.

• The algorithm must not require any input parameters. The Dictionary passed to the
createAlgorithm method will always be empty.

Optional:

• The algorithm’s service metadata should have “remoteable=true” if it meets the
requirements of a remoteable algorithm.

• The algorithm’s service metadata should have a “label” which is a short human-readable
name for the converter, usually with the common name of the input data format and output
data format.

• The algorithm’s service metadata should have a “description” explaining the conversion in
more detail, especially what data may be lossed if “conversion=lossy”.

• The algorithm’s service metadata should have “implementers” filled in accordingly.

Validator Algorithms

A validator algorithm is a custom type of CIShell algorithm which checks either an incoming or
outgoing file to be sure it is of the type specified. This is necessary due to the fact that one
cannot simply assume based on the file extension what type of file format the data is in. Checking
the contents of the file is necessary, especially in the case of multiple file formats for the same file
extension (e.g., XML). This type of algorithm is important for reliably bringing in outside data
and saving out data from CIShell. A validator algorithm has the following constraints:

Required:

• The algorithm must be a conformant AlgorithmFactory implementation and properly
registered as a service.

• The algorithm’s service metadata must contain an “in data” and “out data” with only one
data item each with one containing a “file:mime/type” format and the other a
“file-ext:file-extension” depending on the direction of validation. See section 2.4 for data
format details.

• The algorithm must take in a single Data item and validate the item producing a single
Data item (with the same data, but changed format) if the file is of the right type. If not,
then the algorithm should log (using the CIShellContext-provided LogService) what the
problem was and must return null. If a problem occurs that is unrelated to the file’s format,
then an AlgorithmExecutionException should be thrown.

15

• The algorithm must not alter the data. Its only purpose is to validate the proposed
incoming or outgoing file.

• The algorithm’s service metadata must contain a valid “service.pid”.

• The algorithm’s service metadata must have “type=validator”.

• The algorithm’s service metadata must have a “label” which is the common name of the
data format being validated.

• The algorithm must not require any input parameters. The Dictionary passed to the
createAlgorithm method will always be empty.

Optional:

• The algorithm’s service metadata should have “remoteable=true” if it meets the
requirements of a remoteable algorithm.

• The algorithm’s service metadata should have “implementers” filled in accordingly.

2.4 Data Specification

Version 1.0

2.4.1 Introduction

Data to be operated on is passed around in Data objects which hold the real data, the data’s
format, and the data’s properties (metadata). The real data can be any Java Object. The format
is a string describing the ’format’ of the data, see next section. Finally, the properties help
describe the data. The label to give the data, the parent Data object from which it was derived
from, and a coarse data type can all be defined in the Data’s properties. See the DataProperty
interface definition for specific properties to use.

2.4.2 Data Format Specification

Data formats are used by algorithms specifying what Data items are consumed/producted and
Data objects must know what the format of its contained real data is. This format is simply a
string that says what the format of the real data is. If the real data is a java.io.File, use a
MIME type2 prefixed by “file:”, i.e., “file:mime/type”. If the real data is a java.io.File known
only by file extension (only applicable for validator algorithms), use the format
“file-ext:file-extension”. Otherwise, if the real data is a Java Object, use the full Java class as a
string, i.e., “java.lang.String” or “my.package.SpecialClass”.
To specify that a single Data object contains one or more sub-Data objects of a single format,
prefix the type with a “+”. For zero or more, prefix the type with a “*”. This corresponds to a
Data object that is wrapping multiple (zero or one or more depending on the prefix) other Data
objects of the associated format in a Java array (Data[]) stored as its contained real data. This is
useful for algorithms that can work on a variable number of Data items.

2If no official mime type is available for a file format, a made up one can be used, but must still
conform to how mime types are constructed, see RFCs 3023 (http://tools.ietf.org/html/rfc3023) and 4288
(http://tools.ietf.org/html/rfc4288).

16

2.5 User Interface Specification

Version 1.0

2.5.1 Introduction

For many algorithms, just looking at the data given isn’t enough. Additional input parameters
are often needed to know how to operate on a given piece of data. An algorithm can define what
parameters are needed by providing a MetaTypeProvider. It defines the types, value range, and
textual description of the parameters needed. From this information, a user interface (UI) can be
created that asks a user for the data. The MetaTypeProvider is not tied to any specific UI, so it
can be reused depending on the context (desktop application, web application, command line,
etc.).
MetaTypeProvider is a Java interface defined in the OSGi R4 Specification Service Compendium
as part of the “Metatype Service Specification,” section 105. A MetaTypeProvider can be
thought of as a collection of UIs. Each UI is called an ObjectClassDefinition, which provides a
UI name and description and is a collection of parameters. Each parameter is an
AttributeDefinition which includes the type, label, description, default value, and range of
valid values. Drop-down boxes can also be defined by using option labels and values with the
AttributeDefinition. OSGi’s documentation should be consulted for more information.

2.5.2 MetaTypeProvider Extensions

Some minor extensions to MetaTypeProvider were made to support some use cases. The
MetaTypeProvider supports several primitive types such as strings, integers, booleans, etc, but
several useful types are missing. To support more types, an AttributeDefinition (AD) of type
“string” has its default value set to a certain string so that the UI builder recognizes this and
selects an appropriate widget. When the algorithm receives the user-entered parameters, the
associated value will be of type java.lang.String, but should contain the correct value as
defined below.

file:

An AD with type “string” and default value “file:” will receive a string pointing to the absolute
path to the file selected by the end-user.

directory:

An AD with type “string” and default value “directory:” will receive a string pointing to the
absolute path to the directory selected by the end-user.

password:

An AD with type “string” and default value “password:” will receive a string corresponding to
the entered password.

rgb:

An AD with type “string” and default value “rgb:” will receive a string which is a comma
separated list that corresponds to the RGB color values the user chose. Each item in the comma

17

separated list would be between 0 and 255. The first item would be the red value, second green
value, and third blue value.

2.5.3 Publishing MetaTypeProviders

For user-adjustable preferences and algorithm input parameters, a MetaTypeProvider is required
to be published to the MetaTypeService. This can be done in two ways, through code or by a
METADATA.XML file.
To publish through code, a few steps must be followed. First, the service to be registered with the
OSGi service registry must fully implement org.osgi.service.cm.ManagedService and
org.osgi.service.metatype.MetaTypeProvider. Second, when registering the service, both
ManagedService and MetaTypeProvider must be in the list of interfaces the service implements.
If these two things are done, the MetaTypeService will notice it and add it to its registry of
MetaTypeProviders.
The recommended way to publish MetaTypeProviders is to publish through a METADATA.XML
file. A METADATA.XML file must be included in the algorithm’s OSGi bundle in a specific
directory, “OSGI-INF/metatype/”. The MetaTypeService will notice this in the bundle and add
it to its registry of MetaTypeProviders. See the “Metatype Service Specification” in the OSGi
specification for details on the XML format.

2.6 User Adjustable Preferences Specification

Version 1.0

2.6.1 Introduction

The user-adjustable preferences specification defines how any service can publish user-adjustable
preferences both globally and locally. In addition to global and local preferences, algorithms can
allow the system to allow end-users to adjust the default values for algorithms’ user-entered input
parameters specification published to the MetaTypeService. For storing data that is not directly
end-user adjustable, see chapter 6.

2.6.2 Publishing User Adjustable Preferences

Create an ObjectClassDefinition (OCD)

To define parameters that can be adjusted by an end-user, an algorithm developer must first
create an ObjectClassDefinition which details the parameters to be published. This OCD
must be visible to the MetaTypeService either through the use of a METADATA.XML file or by
the service implementing MetaTypeProvider and ManagedService. See section 2.5 for more
information.

Designate an OCD a Persistent ID (PID)

Then they must designate the ObjectClassDefinition a unique persistent id (PID). The PID
can be designated in two ways. The simplest way is by following the convention of creating a
string with the associated service’s “service.pid” and appending either “.prefs.local” or
“.prefs.global”. The other way is to designate whatever PID the developer wishes and to provide
a service property “local pref pid” or “global pref pid” which is set to whatever PID they chose.

18

Declare What Preferences are to be Published

To let the system know that you wish to publish preferences, the system properties must contain
a “prefs published” key with zero or more of the following values (separated by commas): “local”
for publishing local prefs, “global” for global prefs, and “param-defaults” for algorithm parameter
defaults.

Algorithm Parameter Defaults

By publishing algorithm parameter defaults, algorithm developers allow end-users to adjust the
default values they see when running their algorithm. This is typically accomplished by wrapping
the MetaTypeProvider published by the algorithm to the MetaTypeService with overridden
AttributeDefinitions that change their default value. Many systems will have this on by
default, but if the “prefs published” key is set in the algorithm’s service metadata and
“param-defaults” is not set, then this feature will be disabled for the algorithm.

Receiving Preference Data

To be notified of changes to local or global preferences, the service must implement
org.osgi.service.cm.ManagedService and set in their service metadata “receive prefs=true”.
When either the local or global preferences are updated, the updated method will be passed a
Dictionary of all of the id/value pairs, including the updated ones. Local preferences will have
the same ids as the AttributeDefinitions (AD) defined in the associated OCD. The local
preferences will also have an additional id “Bundle-Version”, which contains the version of the
service’s associated bundle that was used when the preference data was last updated. Global
preferences will have the same ids (plus a “Bundle-Version” id analagous to local preference’s)
from their OCD’s ADs prefixed by the PID of the published global preference. In this way, all
global preferences published in the system will be available to anyone receiving preference data.
Note that global preferences can be received without publishing preferences.

2.7 org.cishell.framework

Interface CIShellContext

The context by which algorithms in the framework can gain access to standard CIShell services. An
instantiated CIShellContext must provide access to at least the default services (as of the 1.0 specification,
the OSGi LogService, the OSGi PreferencesService, the CIShell defined DataConversionService, and the
CIShell defined GUIBuilderService). Other services may be made available through this class, but anything
beyond the standard services is not guaranteed.

Declaration

public interface CIShellContext

Fields

19

• public static final String DEFAULT SERVICES

– Contains an array of the valid strings corresponding to the default services

Methods

• getService
public java.lang.Object getService(java.lang.String service)

– Usage
∗ Locates and returns a standard service given the service name. The service name

is generally the full class name of the service interface. For example, LogService’s
string is org.osgi.service.log.LogService.

– Parameters
∗ service - A string (usually the associated interface’s full class name) that specifies

the service to retrieve
– Returns - An instantiated version of the service requested

Class LocalCIShellContext

A simple implementation of CIShellContext that pulls the CIShell services from the provided
BundleContext that all OSGi bundles receive on activation. This was included in the standard API since it
will be used frequently by CIShell application developers.
This implementation only returns standard services or the service strings given to it in its constructor.

Declaration

public class LocalCIShellContext
extends java.lang.Object
implements CIShellContext

Constructors

• LocalCIShellContext
public LocalCIShellContext(org.osgi.framework.BundleContext bContext)

– Usage
∗ Initializes the CIShell context based on the provided BundleContext

– Parameters
∗ bContext - The BundleContext to use to find the registered standard services

• LocalCIShellContext
public LocalCIShellContext(org.osgi.framework.BundleContext bContext,
java.lang.String[] standardServices)

20

– Usage
∗ Initializes the CIShell context with a custom set of standard services. Only the

service in the array will be allowed to be retrieved from this CIShellContext.
– Parameters

∗ bContext - The BundleContext to use to find registered standard services
∗ standardServices - An array of strings specifying the services that are allowed to

be retrieved from this class

Methods

• getService
public java.lang.Object getService(java.lang.String service)

– See Also

∗ org.cishell.framework.CIShellContext.getService(java.lang.String) (
in 2.7, page 20)

2.8 org.cishell.framework.algorithm

Interface Algorithm

A class which executes some arbitrary code and optionally returns any data produced. What happens
when the execute method is run is entirely up to the Algorithm developer. Algorithms should be primed
with whatever data is needed, usually by its associated AlgorithmFactory, before execution. This allows an
Algorithm to be set up, then scheduled for later execution.

Declaration

public interface Algorithm

Methods

• execute
public Data execute()

– Usage
∗ Executes and optionally returns a Data array

– Returns - A Data array that was created. null is ONLY acceptable when the
algorithms out data is null.

– Exceptions
∗ org.cishell.framework.algorithm.AlgorithmExecutionException - An

exception has occured while executing the algorithm. This exception should have a
user-comprehendable message if at all possible.

21

Interface AlgorithmFactory

A service interface for creating Algorithms to be executed. An algorithm developer must create an
implementation of this interface and register it (along with some standard metadata about the algorithm,
defined in the AlgorithmProperty class) in the OSGi service registry. If the algorithm requires input in
addition to the raw data provided, a MetaTypeProvider must be published to OSGi’s MetaTypeService
(usually through a METADATA.XML file in the algorithm’s bundle).
See the CIShell Specification 1.0 at http://cishell.org/dev/docs/spec/cishell-spec-1.0.pdf for
documentation on the full requirements for algorithm creation.

Declaration

public interface AlgorithmFactory

Methods

• createAlgorithm
public Algorithm createAlgorithm(Data[] data, java.util.Dictionary
parameters, CIShellContext context)

– Usage
∗ Creates an Algorithm to be executed

– Parameters
∗ data - The data to be given to the Algorithm to process. Some Algorithms may

ignore this value. The order and type of data given are specified in the service
dictionary (the ’in data’ key) when registered as a service in OSGi.

∗ parameters - A set of key-value pairs that were created based on the associated
input specification published to the MetaTypeService

∗ context - The context by which the Algorithm can gain access to standard
CIShell services

– Returns - An Algorithm primed for execution

Interface AlgorithmProperty

A standard set of properties and values used for creating a service metadata Dictionary that is provided
when registering an AlgorithmFactory with the OSGi service registry.
See the CIShell Specification 1.0 at http://cishell.org/dev/docs/spec/cishell-spec-1.0.pdf for
documentation on each property.

Declaration

public interface AlgorithmProperty

22

Fields

• public static final String IN DATA = “in data”

–

• public static final String OUT DATA = “out data”

–

• public static final String NULL DATA = “null”

–

• public static final String PARAMETERS PID = “parameters pid”

–

• public static final String PARENTAGE = “parentage”

–

• public static final String DEFAULT PARENTAGE = “default”

–

• public static final String ALGORITHM TYPE = “type”

–

• public static final String TYPE CONVERTER = “converter”

–

• public static final String TYPE VALIDATOR = “validator”

–

• public static final String TYPE DATASET = “dataset”

–

• public static final String REMOTEABLE = “remoteable”

–

• public static final String REMOTE = “remote”

–

• public static final String LABEL = “label”

–

• public static final String DESCRIPTION = “description”

–

• public static final String MENU PATH = “menu path”

–

23

• public static final String ADDITIONS GROUP = “additions”

–

• public static final String START GROUP = “start”

–

• public static final String END GROUP = “end”

–

• public static final String CONVERSION = “conversion”

–

• public static final String LOSSY = “lossy”

–

• public static final String LOSSLESS = “lossless”

–

• public static final String AUTHORS = “authors”

–

• public static final String IMPLEMENTERS = “implementers”

–

• public static final String INTEGRATORS = “integrators”

–

• public static final String DOCUMENTATION URL = “documentation url”

–

• public static final String REFERENCE = “reference”

–

• public static final String REFERENCE URL = “reference url”

–

• public static final String WRITTEN IN = “written in”

–

Interface DataValidator

An additional interface an AlgorithmFactory can implement that allows for further data validation beyond
what is provided in the service dictionary’s in data/out data specifications. This is useful in cases where an
algorithm expects a certain type of data, but must make additional checks. For example, if an algorithm
only worked on symmetric matrices, this interface would check the data ahead of time to ensure that the
given matrix was in fact a symmetric matrix.

24

Declaration

public interface DataValidator

Methods

• validate
public java.lang.String validate(Data[] data)

– Usage
∗ Validates the given data that is proposed to be given to the algorithm. It can

return three different values:
null No validation present
"" The data is valid
"..." A localized description of why its invalid

– Parameters
∗ data - The proposed data that may be given to create an Algorithm

– Returns - null, ””, or another string

Interface ParameterMutator

An additional interface an AlgorithmFactory can implement that allows for adding, modifying, or removing
input parameters before being shown to the end-user for input. This interface is often implemented by
algorithms that wish to customize the user interface based on the actual input data.

Declaration

public interface ParameterMutator

Methods

• mutateParameters
public org.osgi.service.metatype.ObjectClassDefinition mutateParameters(
Data[] data, org.osgi.service.metatype.ObjectClassDefinition parameters)

– Usage
∗ Adds, modifies, or removes Algorithm parameters (AttributeDefinitions) from a

given ObjectClassDefinition returning either the same (if no changes are made)
input or a new, mutated version of the input

– Parameters
∗ data - An optional argument, the Data array that will be given to this class to

create an Algorithm with the createAlgorithm method. Applications that don’t
know the Data array that is going to be used ahead of time can give a null value.

25

∗ parameters - A set of AttributeDefinitions which define the algorithm’s input
parameters

– Returns - An OSGi ObjectClassDefinition that defines the parameters needed by the
Algorithm this class creates

Interface ProgressMonitor

A class to monitor the progress of an algorithm. It allows for notification of progress, notification of
cancellation, notification of pausing, and description of current work during execution. Except for the
setter methods, the methods are generally only called by the algorithm with the CIShell application
providing the progress monitor implementation.

Declaration

public interface ProgressMonitor

Fields

• public static final ProgressMonitor NULL MONITOR

– A monitor with empty methods for use by algorithms when no ProgressMonitor has
been given to it. This helps to eliminate spurious null checks to ensure the progress
monitor is not null.

• public static final int WORK TRACKABLE = 2

– Capability constant specifying that this algorithm can update its work progress (value
is 1<<1)

• public static final int CANCELLABLE = 4

– Capability constant specifying that this algorithm can be cancelled (value is 1<<2)

• public static final int PAUSEABLE = 8

– Capability constant specifying that this algorithm can be paused (value is 1<<3)

Methods

• describeWork
public void describeWork(java.lang.String currentWork)

– Usage
∗ Method to describe what the algorithm is currently doing for the benefit of the

users of the algorithm as it progresses during execution
– Parameters

∗ currentWork - A short description of the current work the algorithm is doing

26

• done
public void done()

– Usage
∗ The algorithm is finished executing

• isCanceled
public boolean isCanceled()

– Usage
∗ Returns whether cancellation of algorithm execution is requested. An algorithm

that can be cancelled should poll this method when convenient to see if it should
cancel.

– Returns - Whether cancellation of algorithm execution is requested

• isPaused
public boolean isPaused()

– Usage
∗ Returns whether pausing of algorithm execution is requested. An algorithm that

can be paused should poll this method when convenient to see if it should pause.
– Returns - Whether pausing of algorithm execution is requested

• setCanceled
public void setCanceled(boolean value)

– Usage
∗ Sets or clears a flag for cancellation of this algorithm’s execution. An algorithm

developer can ignore or clear this flag if it cannot stop midstream. This is one of
the methods that can be called by something other than the algorithm.

– Parameters
∗ value - Set or clear the cancellation request

• setPaused
public void setPaused(boolean value)

– Usage
∗ Sets or clears a flag for pausing of this algorithm’s execution. An algorithm

developer can ignore or clear this flag if it cannot pause midstream. This is one of
the methods that can be called by something other than the algorithm.

– Parameters
∗ value - Set or clear the pause request

• start
public void start(int capabilities, int totalWorkUnits)

– Usage

27

∗ Notifies the start of execution of the algorithm in addition to revealing how many
work units will be used

– Parameters
∗ capabilities - An OR’ed int that tells the monitor what the algorithm is capable

of with respect to the monitor. The OR’ed values are taken from the int constants
specified in this interface.

∗ totalWorkUnits - The number of work units, -1 if the algorithm does not provide
progress information

• worked
public void worked(int work)

– Usage
∗ Notifies that a certain number of units of work has been completed

– Parameters
∗ work - The number of units of work completed since last notification

Interface ProgressTrackable

An additional interface an Algorithm can implement that allows for monitoring of progress, process
cancellation, and current work description. This was not included in the Algorithm interface because
many of the algorithms will not be able to support these features (especially the algorithms that are
wrapping executable programs). Even algorithms that do implement this interface do not have to provide
all of the features. For instance, an algorithm may only support progress notification and not cancellation.

Declaration

public interface ProgressTrackable

Methods

• getProgressMonitor
public ProgressMonitor getProgressMonitor()

– Usage
∗ Returns the progress monitor currently in use, or null if no monitor has been set

– Returns - The current progress monitor, or null if there isn’t one set

• setProgressMonitor
public void setProgressMonitor(ProgressMonitor monitor)

– Usage
∗ Sets the progress monitor this algorithm is to use. This method should be called

before an algorithm is executed. If this method is not set prior to execution, the
algorithm must run without it.

28

– Parameters
∗ monitor - The monitor the algorithm is to use

Class AlgorithmExecutionException

An exception which is thrown when an error occurs in the process of executing an Algorithm

Declaration

public class AlgorithmExecutionException
extends java.lang.Exception

Constructors

• AlgorithmExecutionException
public AlgorithmExecutionException(java.lang.String message)

• AlgorithmExecutionException
public AlgorithmExecutionException(java.lang.String message,
java.lang.Throwable exception)

• AlgorithmExecutionException
public AlgorithmExecutionException(java.lang.Throwable exception)

Methods inherited from class java.lang.Exception

Methods inherited from class java.lang.Throwable

• fillInStackTrace
public synchronized native java.lang.Throwable fillInStackTrace()

• getCause
public java.lang.Throwable getCause()

• getLocalizedMessage
public java.lang.String getLocalizedMessage()

• getMessage
public java.lang.String getMessage()

• getStackTrace
public java.lang.StackTraceElement[] getStackTrace()

• initCause
public synchronized java.lang.Throwable initCause(java.lang.Throwable arg0)

• printStackTrace
public void printStackTrace()

29

• printStackTrace
public void printStackTrace(java.io.PrintStream arg0)

• printStackTrace
public void printStackTrace(java.io.PrintWriter arg0)

• setStackTrace
public void setStackTrace(java.lang.StackTraceElement[] arg0)

• toString
public java.lang.String toString()

2.9 org.cishell.framework.data

Interface Data

A class that contains data, its format, and its metadata. This class is used to pass data between algorithms
and is what algorithms optionally create when executed.

Declaration

public interface Data

Methods

• getData
public java.lang.Object getData()

– Usage
∗ Returns the data stored in this Data object

– Returns - The data (a Java object)

• getFormat
public java.lang.String getFormat()

– Usage
∗ Returns the format of the encapsulated data. If the data is a File, then this

method returns what MIME type it is with ”file:” prepended (eg. file:text/plain).
Otherwise, the string returned should be the Java class it represents. For
algorithms this format should be the same as their OUT DATA property.

– Returns - The main format of the data

• getMetadata
public java.util.Dictionary getMetadata()

– Usage
∗ Returns the metadata associated with the data stored in this Data object.

Standard keys and values are in the DataProperty interface.
– Returns - The data’s metadata

30

Interface DataProperty

Standard property keys and values to use when creating metadata for a Data object

Declaration

public interface DataProperty

Fields

• public static final String LABEL = “Label”

– The label to give the Data object if displayed. The type associated with this property
is of type String.

• public static final String SHORT LABEL = “Short Label”

– A short label to give the Data object for shorter displays. It is recommended to keep
the string length below 20 characters. This will often be used for recommended file
names when saving the data to disk. The type associated with this property is of type
String.

• public static final String PARENT = “Parent”

– The parent Data object of the Data object. This is used when a Data object is derived
from another Data object to show the hierarchical relationship between them. This
property can be null, signifying that the Data object was not derived from any other
Data object, such as when loading a new Data object from a file. The type associated
with this property is of type Data.

• public static final String TYPE = “Type”

– The general type of the Data object. Various standard types are created as constants
with name * TYPE from this class. These can be used, or new types can be introduced
as needed. The type associated with this property is of type String.

• public static final String MODIFIED = “Modified”

– Flag to determine if the Data object has been modified and not saved since the
modification. This is used to do things like notify the user before they exit that a
modified Data object exists and ask if they want to save it. The type associated with
this property is of type Boolean.

• public static final String MATRIX TYPE = “Matrix”

– Says this data model is abstractly a matrix

• public static final String NETWORK TYPE = “Network”

– Says this data model is abstractly a network

31

• public static final String TABLE TYPE = “Table”

– Says this data model is abstractly a table

• public static final String TREE TYPE = “Tree”

– Says this data model is abstractly a tree

• public static final String OTHER TYPE = “Unknown”

– Says this data model is abstractly an unknown type

• public static final String TEXT TYPE = “Text”

– Says this data model is abstractly a plain text file

• public static final String PLOT TYPE = “Plot”

– Says this data model is abstractly a data plot

Class BasicData

A basic implementation of Data. This class was included since a simple implementation of Data will be
used quite often in both application and algorithm code.

Declaration

public class BasicData
extends java.lang.Object
implements Data

Constructors

• BasicData
public BasicData(java.util.Dictionary properties, java.lang.Object data,
java.lang.String format)

– Usage
∗ Creates a Data object with the given data and metadata Dictionary

– Parameters
∗ properties - The metadata about the data
∗ data - The data being wrapped

• BasicData
public BasicData(java.lang.Object data, java.lang.String format)

– Usage
∗ Creates a Data object with the given data and an empty metadata Dictionary

– Parameters
∗ data - The data being wrapped

32

Methods

• getData
public java.lang.Object getData()

– See Also

∗ org.cishell.framework.data.Data.getData()

• getFormat
public java.lang.String getFormat()

– See Also

∗ org.cishell.framework.data.Data.getFormat()

• getMetadata
public java.util.Dictionary getMetadata()

– See Also

∗ org.cishell.framework.data.Data.getMetadata()

2.10 org.cishell.framework.userprefs

Interface UserPrefsProperty

A standard set of properties and values to be placed in a service’s metadata Dictionary when registering a
service with the OSGi service registry for the purpose of publishing and receiving user-adjustable
preferences.
See the CIShell Specification 1.0 at http://cishell.org/dev/docs/spec/cishell-spec-1.0.pdf for
information on publishing user-adjustable preferences.

Declaration

public interface UserPrefsProperty

Fields

• public static final String LOCAL PREFS OCD SUFFIX = “.prefs.local”

– The suffix to add to the service’s PID for generating a local preferences PID when
using the standard naming convention

• public static final String GLOBAL PREFS OCD SUFFIX = “.prefs.global”

– The suffix to add to the service’s PID for generating a global preferences PID when
using the standard naming convention

33

• public static final String PARAM PREFS OCD SUFFIX = “”

– The suffix to add to the service’s PID for an Algorithm’s user-entered input parameters
PID when using the standard naming convention

• public static final String LOCAL PREFS PID = “local prefs pid”

– The key for specifying a local preferences PID. Only use this when not following the
standard naming convention.

• public static final String GLOBAL PREFS PID = “global prefs pid”

– The key for specifying a global preferences PID. Only use this when not following the
standard naming convention.

• public static final String PREFS PUBLISHED KEY = “prefs published”

– The key for specifying what types of preferences are published

• public static final String PUBLISH LOCAL PREFS VALUE = “local”

– The value for specifying that local preferences are to be published

• public static final String PUBLISH GLOBAL PREFS VALUE = “global”

– The value for specifying that global preferences are to be published

• public static final String PUBLISH PARAM DEFAULT PREFS VALUE =
“param-defaults”

– The value for specifying that an Algorithm’s user-entered input parameter defaults
may be adjusted by the user

• public static final String RECEIVE PREFS KEY = “receive prefs”

– The key for declaring a need to receive preferences. ”true” and ”false” are the possible
associated values.

• public static final String LOCAL PREFS CONF SUFFIX = “”

– The suffix to add to the service’s PID for getting the local preferences directly from the
ConfigurationAdmin (not recommended)

• public static final String GLOBAL PREFS CONF SUFFIX = “.prefs.global”

– The suffix to add to the service’s PID for getting the global preferences directly from
the ConfigurationAdmin (not recommended)

• public static final String PARAM PREFS CONF SUFFIX = “.prefs.params”

– The suffix to add to the service’s PID for getting an Algorithm’s user-entered input
parameter defaults that have been user-adjusted directly from the ConfigurationAdmin
(not recommended)

• public static final String BUNDLE VERSION KEY = “Bundle-Version”

– A key set in each configuration object which states the Bundle-Version of the service
when it was last updated

34

Chapter 3

Data Conversion Service Specification

Version 1.0

3.1 Introduction

A conscious design decision was made for CIShell not to enforce a central data model/format that
all algorithms have to work with. Instead, an algorithm expresses the data format of each data
item coming into and out of the algorithm in its service metadata. It is the job of the code calling
the algorithm to get the data in the right format before calling the algorithm. The Data
Conversion Service is used here to simplify the process of converting data.

3.1.1 Entities

• DataConversionService - The service interface for converting data to different formats.

• Converter Algorithm - A special type of algorithm, defined on page 14, which converts data
from one format to another.

• Converter - The interface for a wrapped set of converter algorithms returned by the
DataConversionService that will convert data from one format to another.

3.2 Data Conversion Service

The Data Conversion Service provides unified access to converter algorithms.
DataConversionService system developers may choose not to leverage converter algorithms, but
this is ill-advised. Also, good implementations will take advantage of the nature of converter
algorithms to allow for more than just single hop conversions. Since all converter algorithms
specify a single data object in and a single data object out, a graph can be constructed where
nodes are the data formats and edges are the converters. Using this directed graph, when a
conversion between data formats is requested, the DataConversionService will choose the
shortest path of converters to do the conversion. A hypothetical conversion graph is illustrated in
figure 3.1.

35

Figure 3.1: A Conversion Graph

3.3 org.cishell.service.conversion

Interface Converter

A class for converting Data objects

Declaration

public interface Converter

Methods

• convert
public Data convert(Data data)

– Usage
∗ Uses this Converter to convert the given Data object to a new format. This is a

convenience method that uses this Converter to convert a Data object of the
corrent format to a Data object of the defined output format.

– Parameters
∗ data - The Data object with compatible format

– Returns - A Data object of correct output format
– Exceptions

∗ org.cishell.service.conversion.ConversionException - If the data
conversion fails while converting

• getAlgorithmFactory
public AlgorithmFactory getAlgorithmFactory()

36

– Usage
∗ Returns the AlgorithmFactory that can be invoked to convert a given Data object

of the correct input format (as specified in the Dictionary from getProperties()) to
a Data object of the correct output format

– Returns - The AlgorithmFactory to do the converting

• getConverterChain
public org.osgi.framework.ServiceReference[] getConverterChain()

– Usage
∗ Returns an array of ServiceReferences to converter algorithms in the order in

which they will be called when converting a Data object
– Returns - An array of ServiceReferences to converter algorithms to be used

• getProperties
public java.util.Dictionary getProperties()

– Usage
∗ Get properties of the Converter (same as algorithm service properties). It is a set

of properties that correspond to the AlgorithmPropertys properties. The
IN DATA and OUT DATA properties are guaranteed to be set in this Dictionary.

– Returns - A set of properties describing the converter (including its in and out data)

Interface DataConversionService

A service for converting data to different formats. This service should utilize the pool of AlgorithmFactory
services which have registered with the OSGi service registry and specified in its service dictionary that
they are a converter. A converter will specify what data format it takes in (’in data’), what it converts it to
(’out data’), and whether any information will be lost in the conversion (’conversion’=’lossless’—’lossy’).
Using this and other standard algorithm properties, a DataConversionService will try and find the fastest,
most efficient way to convert from one format to another.

Declaration

public interface DataConversionService

Methods

• convert
public Data convert(Data data, java.lang.String outFormat)

– Usage
∗ Tries to convert a given Data object to the specified output format

– Parameters
∗ data - The Data to convert

37

∗ outFormat - The format of the Data object to be returned
– Returns - A Data object with the specified output format
– Exceptions

∗ org.cishell.service.conversion.ConversionException - If the data
conversion fails while converting

• findConverters
public Converter findConverters(Data data, java.lang.String outFormat)

– Usage
∗ Tries to find all the converters that can be used to transform the given Data object

to the specified output format
– Parameters

∗ data - The Data object to convert
∗ outFormat - The output format to convert to

– Returns - An array of Converters that can convert the given Data object to the
specified output format

• findConverters
public Converter findConverters(java.lang.String inFormat, java.lang.String
outFormat)

– Usage
∗ Finds converters from one format to another if at all possible. The returned

Converters, which may be a composite of multiple algorithms, will take a Data
object of the specified inFormat and convert it to a Data object of type
outFormat.

– Parameters
∗ inFormat - The type of Data object to be converted. This String should be

formatted in the same way as an algorithm’s AlgorithmProperty.IN DATA.
∗ outFormat - The type of Data object that should be produced. This String should

be formatted in the same way as an algorithm’s AlgorithmProperty.OUT DATA.
– Returns - An array of Converters that can convert a Data object of the given

inFormat to the specified outFormat

Class ConversionException

An exception which is thrown when an error occurs in the process of data conversion

Declaration

public class ConversionException
extends java.lang.Exception

38

Constructors

• ConversionException
public ConversionException(java.lang.String message)

• ConversionException
public ConversionException(java.lang.String message, java.lang.Throwable
exception)

• ConversionException
public ConversionException(java.lang.Throwable exception)

Methods inherited from class java.lang.Exception

Methods inherited from class java.lang.Throwable

• fillInStackTrace
public synchronized native java.lang.Throwable fillInStackTrace()

• getCause
public java.lang.Throwable getCause()

• getLocalizedMessage
public java.lang.String getLocalizedMessage()

• getMessage
public java.lang.String getMessage()

• getStackTrace
public java.lang.StackTraceElement[] getStackTrace()

• initCause
public synchronized java.lang.Throwable initCause(java.lang.Throwable arg0)

• printStackTrace
public void printStackTrace()

• printStackTrace
public void printStackTrace(java.io.PrintStream arg0)

• printStackTrace
public void printStackTrace(java.io.PrintWriter arg0)

• setStackTrace
public void setStackTrace(java.lang.StackTraceElement[] arg0)

• toString
public java.lang.String toString()

39

Chapter 4

GUI Builder Service Specification

Version 1.0

4.1 Introduction

The GUI Builder Service provides a user-interface-agnostic solution to create UIs for simple user
input. The UIs are built from the user interface specification provided by MetaTypeProvider and
requires no UI coding to be done other than providing an implementation of MetaTypeProvider.
Information on creating these classes can be found in section 2.5. In addition, simple methods for
creating warnings, pop-ups, and simple yes/no dialog boxes are provided by the GUI Builder
Service. The GUI creation workflow is illustrated in figure 4.1.

4.1.1 Entities

• GUIBuilderService - The Service interface for creating user interfaces and dialog boxes.

• MetaTypeProvider - The interface for creating simple user interface specifications.

• GUI - The interface for controlling the GUIBuilderService generated user interface.

• SelectionListener - The interface to listen for events generated by the user’s interaction with
the UI.

<<interface>>

MetaTypeProvider

<<interface>>

GUI

<<interface>>

GUIBui lderService

<<interface>>

Select ionListener

givenn 1

Creates

1

n

notifies

Figure 4.1: GUI Creation Workflow

40

4.2 org.cishell.service.guibuilder

Interface GUI

A simple GUI for user interaction. A single SelectionListener can be set to be informed when the user
enters information and hits Ok.

Declaration

public interface GUI

Methods

• close
public void close()

– Usage
∗ Closes the GUI

• isClosed
public boolean isClosed()

– Usage
∗ Returns if the GUI is closed

– Returns - If the GUI has been closed or not

• open
public void open()

– Usage
∗ Opens the GUI and shows it to the user

• openAndWait
public java.util.Dictionary openAndWait()

– Usage
∗ Pops up this GUI, gets data from the user, and returns what they entered. This is

a convenience method that first opens the GUI, then shows the GUI to the user,
who then enters in the needed information, which is then taken and put into a
Dictionary, and is given to this method’s caller.

– Returns - The data the user entered or null if the operation was cancelled

• setSelectionListener
public void setSelectionListener(SelectionListener listener)

– Usage

41

∗ Sets the selection listener to be informed when the user finishes entering
information and hits ’Ok’ or cancels

– Parameters
∗ listener - The listener to notify

Interface GUIBuilderService

A service for creating simple GUIs for user interaction. This service provides several methods for popping
up dialog boxes to get or give very simple information and a more flexible way to create GUIs using a
standard OSGi MetaTypeProvider. The MetaTypeProvider basically lists what input is needed (String,
Integer, Float, etc...), a description of the input, and a way to validate input.
See the CIShell Specification 1.0 at http://cishell.org/dev/docs/spec/cishell-spec-1.0.pdf for
documentation on creating GUIs with this service.
Algorithm writers are encouraged to use this service if they need to get additional input from the user
rather than creating their own GUI. This is to ensure a consistent user input method and so that the GUI
can easily be routed to the user when running remotely.

Declaration

public interface GUIBuilderService

Methods

• createGUI
public GUI createGUI(java.lang.String id,
org.osgi.service.metatype.MetaTypeProvider parameters)

– Usage
∗ Creates a GUI for user interaction

– Parameters
∗ id - The id to use to get the correct ObjectClassDefinition from the provided

MetaTypeProvider
∗ parameters - Provides the parameters needed to get information from the user

– Returns - The created GUI

• createGUIandWait
public java.util.Dictionary createGUIandWait(java.lang.String id,
org.osgi.service.metatype.MetaTypeProvider parameters)

– Usage
∗ Creates a GUI, gets data from the user, and returns what they entered. This is a

convenience method that first creates a GUI from the provided MetaTypeProvider,
then pops the GUI up to the user, who then enters in the needed information,
which is then taken and put into a Dictionary, and is given to this method’s caller.

– Parameters

42

∗ id - The id to use to get the correct ObjectClassDefinition from the provided
MetaTypeProvider

∗ parameters - Provides the parameters needed to get information from the user
– Returns - The data the user entered or null if the operation was cancelled

• showConfirm
public boolean showConfirm(java.lang.String title, java.lang.String
message, java.lang.String detail)

– Usage
∗ Pops up a confirmation box to the user with an ’Ok’ and ’Cancel’ button

– Parameters
∗ title - The title of the pop-up
∗ message - The message to display
∗ detail - Additional details

– Returns - If they clicked ”Ok,” true, otherwise false

• showError
public void showError(java.lang.String title, java.lang.String message,
java.lang.String detail)

– Usage
∗ Pops up an error box to the user. This should only be used sparingly. Algorithms

should try to use the LogService instead.
– Parameters

∗ title - The title of the pop-up
∗ message - The message to display
∗ detail - Additional details

• showError
public void showError(java.lang.String title, java.lang.String message,
java.lang.Throwable error)

– Usage
∗ Pops up an error box to the user. This should only be used sparingly. Algorithms

should try to use the LogService instead.
– Parameters

∗ title - The title of the pop-up
∗ message - The message to display
∗ error - The actual exception that was thrown

• showInformation
public void showInformation(java.lang.String title, java.lang.String
message, java.lang.String detail)

– Usage
∗ Pops up an information box to the user. This should only be used sparingly.

Algorithms should try to use the LogService instead.
– Parameters

43

∗ title - The title of the pop-up
∗ message - The message to display
∗ detail - Additional details

• showQuestion
public boolean showQuestion(java.lang.String title, java.lang.String
message, java.lang.String detail)

– Usage
∗ Pops up a question box to the user with a ’Yes’ and ’No’ button

– Parameters
∗ title - The title of the pop-up
∗ message - The question to display
∗ detail - Additional details

– Returns - If they clicked ”Yes,” true, otherwise false

• showWarning
public void showWarning(java.lang.String title, java.lang.String message,
java.lang.String detail)

– Usage
∗ Pops up a warning box to the user. This should only be used sparingly.

Algorithms should try to use the LogService instead.
– Parameters

∗ title - The title of the pop-up
∗ message - The message to display
∗ detail - Additional details

Interface SelectionListener

A listener that is notified when all values entered by a GUI user have been validated and they have clicked
’Ok’ to proceed or if the operation was cancelled

Declaration

public interface SelectionListener

Methods

• cancelled
public void cancelled()

– Usage
∗ Notification that the user cancelled the operation

44

• hitOk
public void hitOk(java.util.Dictionary valuesEntered)

– Usage
∗ Notification that the user hit ’Ok’ along with the data they entered

– Parameters
∗ valuesEntered - The data the user entered

45

Chapter 5

Log Service Specification

Version 1.3

5.1 Introduction

CIShell requires OSGi’s standard LogService to be installed in a CIShell-compliant system. This
gives both the algorithms and the applications built on CIShell a standard logging sytem to use.
This service has not been extended or modified. More information about the LogService is
available in the OSGi Service Platform Service Compendium Specification R4, section 101 under
“Log Service Specification.” Recommended output per log level for CIShell algorithms are listed
in table 5.1.

Log Level Recommended Use
LOG DEBUG Used for problem determination and may be irrelevent to anyone but

the algorithm developer.
LOG ERROR Indicates a problem occurred while the algorithm was executing. Indi-

cators of possible fixes should be output to this level along with relevent
information describing what went wrong, if possible.

LOG INFO Used for providing information about and while the algorithm is execut-
ing. It does not indicate a problem.

LOG WARNING Indicates that the algorithm will still be executed, but that outputs may
not be what was expected. This is often in response to illogical, but still
valid user inputs.

Table 5.1: Log Level Recommendations for Algorithms

46

Chapter 6

Preferences Service Specification

Version 1.1

6.1 Introduction

CIShell requires OSGi’s standard PreferencesService to be installed in a CIShell-compliant
system. This gives both the algorithms and the applications built on CIShell a standard
preferences storage system to use. It is used mainly as a storage mechanism for data that is not
necessarily adjustable by end-users. Things like, last opened file, recently opened files, or any sort
of data that may need to be saved between sessions. This service has not been modified or
extended. More information about the PreferencesService is available in the OSGi Service
Platform Service Compendium Specification R4, section 106 under “Preferences Service
Specification.” Algorithm developers wishing to expose user-adjustable preferences, should refer
to section 2.6 for more information on this separate task.

47

Chapter 7

Data Manager Application Service
Specification

Version 1.0

7.1 Introduction

The Data Manager Service is an optional service designed for application developers to have a
central Data management system. Algorithm developers may use this too if they wish, but it is
not guaranteed to be available across all CIShell-compliant systems.

7.1.1 Entities

• DataManagerService - The service interface for Data management.

• DataManagerListener - The interface for listening to events generated by the
DataManagerService.

• DataManagerAdapter - This abstract class is an adapter implementation of
DataManagerListener with empty method implementations.

• Data - The interface used to pass data (other than input parameters) and its metadata
between algorithms.

7.2 org.cishell.app.service.datamanager

Interface DataManagerListener

A listener that is notified of changes in the DataManagerService

Declaration

public interface DataManagerListener

48

Methods

• dataAdded
public void dataAdded(Data data, java.lang.String label)

– Usage
∗ Notifies that a Data object has been added to the associated DataManagerService

– Parameters
∗ data - The added Data object
∗ label - The label assigned to the Data object

• dataLabelChanged
public void dataLabelChanged(Data data, java.lang.String label)

– Usage
∗ Notifies that a Data object has had its label changed

– Parameters
∗ data - The Data object
∗ label - The new label

• dataRemoved
public void dataRemoved(Data data)

– Usage
∗ Notifies that a Data object has been removed from the associated

DataManagerService
– Parameters

∗ data - The removed Data object

• dataSelected
public void dataSelected(Data[] data)

– Usage
∗ Notifies that a set of data objects have been selected in the associated

DataManagerService
– Parameters

∗ data - The selected Data objects

Interface DataManagerService

A service for managing loaded Data objects. DataManagerListeners may be registered to be notified of
changes in the data manager.
Application developers are encouraged to use this service for managing the models they have loaded into
memory. Algorithm developers are encouraged not to use this service as it is not guaranteed to be available
like the standard CIShell services are.

49

Declaration

public interface DataManagerService

Methods

• addData
public void addData(Data data)

– Usage
∗ Adds a Data object to the manager

– Parameters
∗ data - The data object

• addDataManagerListener
public void addDataManagerListener(DataManagerListener listener)

– Usage
∗ Adds a DataManagerListener that will be notified as Data objects are added,

removed, and selected
– Parameters

∗ listener - The listener to be notified of events

• getAllData
public Data getAllData()

– Usage
∗ Returns all of the Data objects loaded into the manager

– Returns - An array of DataModels, length may be zero

• getLabel
public java.lang.String getLabel(Data data)

– Usage
∗ Returns the label for a stored Data object

– Parameters
∗ data - The Data object

– Returns - A label for the Data object

• getSelectedData
public Data getSelectedData()

– Usage
∗ Returns The Data objects that have been selected in the manager

– Returns - An array of Data objects, length may be zero

50

• removeData
public void removeData(Data data)

– Usage
∗ Removes a Data object from the manager

– Parameters
∗ data - The data object

• removeDataManagerListener
public void removeDataManagerListener(DataManagerListener listener)

– Usage
∗ Removes the DataManagerListener from the listener group and will no longer

notify it of events
– Parameters

∗ listener - The listener to be removed

• setLabel
public void setLabel(Data data, java.lang.String label)

– Usage
∗ Set the label to be used for the Data object. The model manager is free to change

the label so that it is unique.
– Parameters

∗ data - The Data
∗ label - The new label for the data model

• setSelectedData
public void setSelectedData(Data[] data)

– Usage
∗ Sets which Data objects are selected in the manager. If a given Data object in the

array of Data objects is not in the data manager, then it will be automatically
added before selection.

– Parameters
∗ data - The data objects to select

Class DataManagerAdapter

An abstract adapter class for notification of changes in the DataManagerService. The methods in this class
are empty. This class exists as a convenience for creating listener objects.

Declaration

public class DataManagerAdapter
extends java.lang.Object
implements DataManagerListener

51

Constructors

• DataManagerAdapter
public DataManagerAdapter()

Methods

• dataAdded
public void dataAdded(Data data, java.lang.String label)

– See Also

∗ org.cishell.app.service.datamanager.DataManagerListener.dataAdded(
org.cishell.framework.data.Data, java.lang.String)

• dataLabelChanged
public void dataLabelChanged(Data data, java.lang.String label)

– See Also

∗ org.cishell.app.service.datamanager.DataManagerListener.-
dataLabelChanged(org.cishell.framework.data.Data, java.lang.String
)

• dataRemoved
public void dataRemoved(Data data)

– See Also

∗ org.cishell.app.service.datamanager.DataManagerListener.dataRemoved(
org.cishell.framework.data.Data) (in 7.2, page 49)

• dataSelected
public void dataSelected(Data[] data)

– See Also

∗ org.cishell.app.service.datamanager.DataManagerListener.dataSelected(
org.cishell.framework.data.Data[]) (in 7.2, page 49)

52

Chapter 8

Scheduler Application Service
Specification

Version 1.0

8.1 Introduction

The Scheduler Service is an optional service designed for application developers to schedule
algorithms for later monitoring and execution. Algorithm developers may use this too if they
wish, but it is not guaranteed to be available across all CIShell-compliant systems.

8.1.1 Entities

• SchedulerService - The service interface for scheduling algorithms to be monitored and
executed.

• SchedulerListener - The interface for listening to events generated by the
SchedulerService.

• SchedulerAdapter - This abstract class is an adapter implementation of SchedulerListener
with empty method implementations.

8.2 org.cishell.app.service.scheduler

Interface SchedulerListener

A listener that is notified of events happening in a SchedulerService

Declaration

public interface SchedulerListener

53

Methods

• algorithmError
public void algorithmError(Algorithm algorithm, java.lang.Throwable error)

– Usage
∗ Notification that an Algorithm had an error while being executed

– Parameters
∗ algorithm - The scheduled Algorithm
∗ error - The error it threw while executing

• algorithmFinished
public void algorithmFinished(Algorithm algorithm, Data[] createdData)

– Usage
∗ Notification that an Algorithm has finished executing

– Parameters
∗ algorithm - The scheduled Algorithm
∗ createdData - The Data array it returned, or null if it returned null

• algorithmRescheduled
public void algorithmRescheduled(Algorithm algorithm, java.util.Calendar
time)

– Usage
∗ Notification that an already scheduled Algorithm has been rescheduled to be run

at a different time
– Parameters

∗ algorithm - The scheduled Algorithm
∗ time - The new time the Algorithm is scheduled to be run

• algorithmScheduled
public void algorithmScheduled(Algorithm algorithm, java.util.Calendar
time)

– Usage
∗ Notification that an Algorithm has been scheduled to be run at a certain time

– Parameters
∗ algorithm - The scheduled Algorithm
∗ time - The time is scheduled to be run

• algorithmStarted
public void algorithmStarted(Algorithm algorithm)

– Usage
∗ Notification that an Algorithm has started execution

– Parameters

54

∗ algorithm - The scheduled algorithm

• algorithmUnscheduled
public void algorithmUnscheduled(Algorithm algorithm)

– Usage
∗ Notification that an already scheduled Algorithm has been unscheduled and will

therefore not be run
– Parameters

∗ algorithm - The scheduled Algorithm that was unscheduled

• schedulerCleared
public void schedulerCleared()

– Usage
∗ Notification that the scheduler’s schedule of Algorithms to be run has been cleared

• schedulerRunStateChanged
public void schedulerRunStateChanged(boolean isRunning)

– Usage
∗ Notification that the scheduler’s run state (paused or unpaused) has changed

– Parameters
∗ isRunning - true if it is now running, false if it is no longer running (paused)

Interface SchedulerService

A service for scheduling Algorithms to be run. SchedulerListeners may be registered to be notified of
events.
Application Developers are encouraged to use this service for scheduling Algorithms to be run. Algorithm
developers are encouraged not to use this service as it is not guaranteed to be available like the standard
CIShell services are.

Declaration

public interface SchedulerService

Methods

• addSchedulerListener
public void addSchedulerListener(SchedulerListener listener)

– Usage
∗ Adds a listener to be notified of events happening in the scheduler

– Parameters

55

∗ listener - The listener to be added

• clearSchedule
public void clearSchedule()

– Usage
∗ Clears all currently scheduled Algorithms to be run. If an Algorithm is already

running, then it will continue to run until finished.

• getScheduledAlgorithms
public Algorithm getScheduledAlgorithms()

– Usage
∗ Returns an array of Algorithms that the scheduler has scheduled. This includes

the Algorithms that are currently running and the ones queued to be run. This
also just gives a snapshot of the current set of scheduled Algorithms, so it is not
guaranteed to be accurate even directly after the method returns.

– Returns - The set of Algorithms currently scheduled in the scheduler

• getScheduledTime
public java.util.Calendar getScheduledTime(Algorithm algorithm)

– Usage
∗ Returns the time in which a scheduled Algorithm is scheduled to be run. The time

may be in the past if the Algorithm is already running or null if the Algorithm is
not scheduled.

– Parameters
∗ algorithm - The Algorithm

– Returns - The scheduled time for the Algorithm to run or null if the Algorithm is
not scheduled or has completed execution

• getServiceReference
public org.osgi.framework.ServiceReference getServiceReference(Algorithm
algorithm)

– Usage
∗ Returns an Algorithm’s associated ServiceReference if one was provided when the

Algorithm was scheduled
– Parameters

∗ algorithm - The Algorithm
– Returns - Its associated ServiceReference

• isEmpty
public boolean isEmpty()

– Usage
∗ Returns if there are any Algorithms scheduled

– Returns - Whether there are any Algorithms scheduled

56

• isRunning
public boolean isRunning()

– Usage
∗ Returns whether the scheduler is running

– Returns - if the scheduler is running

• removeSchedulerListener
public void removeSchedulerListener(SchedulerListener listener)

– Usage
∗ Removes a SchedulerListener from the group of listeners listening for scheduler

events. This method has no effect if the listener isn’t in the group of listeners.
– Parameters

∗ listener - The listener to be removed

• reschedule
public boolean reschedule(Algorithm algorithm, java.util.Calendar newTime
)

– Usage
∗ Reschedules an already scheduled Algorithm to be run at a different time. If the

Algorithm is not scheduled already, then this method will have no effect and will
return false.

– Parameters
∗ algorithm - The Algorithm already scheduled
∗ newTime - The revised time in which to run the Algorithm

– Returns - If the Algorithm was successfully rescheduled

• runNow
public void runNow(Algorithm algorithm,
org.osgi.framework.ServiceReference ref)

– Usage
∗ Schedules an Algorithm to be run immediately. If there are simply not enough

resources to run it, it will still have to wait until there are enough resources to
fulfill the request.

– Parameters
∗ algorithm - The algorithm to be run
∗ ref - A reference to the Algorithm’s associated service, may be null

• schedule
public void schedule(Algorithm algorithm,
org.osgi.framework.ServiceReference ref)

– Usage
∗ Schedules an Algorithm to be run when convenient. This schedules an Algorithm

to be run now, but gives no urgent priority to it. Most Algorithms will be
scheduled in this way.

57

– Parameters
∗ algorithm - The Algorithm to be scheduled
∗ ref - A reference to the Algorithm’s associated service, may be null

• schedule
public void schedule(Algorithm algorithm,
org.osgi.framework.ServiceReference ref, java.util.Calendar time)

– Usage
∗ Schedules an Algorithm to be run at a specific time. The Algorithm will be run at

the given time unless there is simply not enough resources at that time. In which
case it would wait until there are enough resources to fulfill the request.

– Parameters
∗ algorithm - The Algorithm to be scheduled
∗ ref - A reference to the Algorithm’s associated service, may be null
∗ time - What time this Algorithm should be run

• setRunning
public void setRunning(boolean isRunning)

– Usage
∗ Pauses or unpauses the running of new Algorithms in the scheduler

– Parameters
∗ isRunning - true to pause, false to unpause

• unschedule
public boolean unschedule(Algorithm algorithm)

– Usage
∗ Unschedules an already scheduled, but not running Algorithm from the scheduler.

Tries to unschedule an Algorithm from the scheduler. If the Algorithm isn’t in the
scheduler or if the Algorithm is already running then this method returns false.

– Parameters
∗ algorithm - The Algorithm to remove from the scheduler

– Returns - If the Algorithm was successfully unscheduled

Class SchedulerAdapter

An abstract adapter class for notification of events happening in a SchedulerService. The methods in this
class are empty. This class exists as a convenience for creating listener objects.

Declaration

public abstract class SchedulerAdapter
extends java.lang.Object
implements SchedulerListener

58

Constructors

• SchedulerAdapter
public SchedulerAdapter()

Methods

• algorithmError
public void algorithmError(Algorithm algorithm, java.lang.Throwable error)

• algorithmFinished
public void algorithmFinished(Algorithm algorithm, Data[] createdData)

• algorithmRescheduled
public void algorithmRescheduled(Algorithm algorithm, java.util.Calendar
time)

• algorithmScheduled
public void algorithmScheduled(Algorithm algorithm, java.util.Calendar
time)

• algorithmStarted
public void algorithmStarted(Algorithm algorithm)

• algorithmUnscheduled
public void algorithmUnscheduled(Algorithm algorithm)

• schedulerCleared
public void schedulerCleared()

• schedulerRunStateChanged
public void schedulerRunStateChanged(boolean isRunning)

59

Appendix A

Apache 2.0 License

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

60

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You

61

institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

62

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

63

	Introduction
	Acknowledgements
	CIShell Platform Overview
	Reader Level
	Conventions and Terms
	Version Information

	Framework API
	Introduction
	Entities
	Operations

	OSGi Dependencies
	Algorithm Specification
	Introduction
	Optional Interfaces
	Service Metadata
	Algorithm Types

	Data Specification
	Introduction
	Data Format Specification

	User Interface Specification
	Introduction
	MetaTypeProvider Extensions
	Publishing MetaTypeProviders

	User Adjustable Preferences Specification
	Introduction
	Publishing User Adjustable Preferences

	org.cishell.framework
	org.cishell.framework.algorithm
	org.cishell.framework.data
	org.cishell.framework.userprefs

	Data Conversion Service Specification
	Introduction
	Entities

	Data Conversion Service
	org.cishell.service.conversion

	GUI Builder Service Specification
	Introduction
	Entities

	org.cishell.service.guibuilder

	Log Service Specification
	Introduction

	Preferences Service Specification
	Introduction

	Data Manager Application Service Specification
	Introduction
	Entities

	org.cishell.app.service.datamanager

	Scheduler Application Service Specification
	Introduction
	Entities

	org.cishell.app.service.scheduler

	Apache 2.0 License

